* 이 글은 홍콩과기대 김성훈 교수님의 무료 동영상 강좌 "모두를 위한 머신러닝과 딥러닝 강의"를 보고 요점을 정리한 글 입니다. Q-Learning in non-deterministic worldEnvironment(환경)는 Stochastic(확률론적인)한 성질을 가지고 있다고 할 수 있습니다. 따라서 Deterministic한 모델에서처럼 모델의 출력이 매개변수 값과 초기 조건에 의해 완전히 결정되는 것이 아니라 특유의 무작위성이 있기 때문에, 동일한 설정의 매개변수 값과 초기 조건이어도 다른 출력이 발생될 수 있습니다. 따라서 Equation (1)을 그대로 사용하게 되면 실제로는 학습이 잘 되지 않을 수 있습니다. $$ Q(s, a) = r + \gamma \max_{a'} Q(s', a') $..
* 이 글은 홍콩과기대 김성훈 교수님의 무료 동영상 강좌 "모두를 위한 머신러닝과 딥러닝 강의"를 보고 요점을 정리한 글 입니다. OpenAI GYMReinforcement Learning(강화 학습)은 Agent와 Environment(환경)로 구성되어 있습니다. Agent가 어떠한 Action(행동)을 하게 되면 그것에 따른 Environment에서의 State(상태)와 Reward(보상)에 대한 정보를 받게 되고 이것을 통하여 학습을 하는 것이 Reinforcement Learning인데, 여기서 Environment를 전부 구현하는 것은 매우 어렵습니다. 이런 구현하기 어려운 Environment가 미리 구현되어져 있고 이것을 라이브러리를 통해 쉽게 사용할 수 있게 제공하는 것이 OpenAI GY..
* 이 글은 홍콩과기대 김성훈 교수님의 무료 동영상 강좌 "모두를 위한 머신러닝과 딥러닝 강의"를 보고 요점을 정리한 글 입니다. Reinforcement Learning(RL, 강화 학습)Reinforcement Learning(강화 학습)은 Deep Learning(딥 러닝)과 함께 최근 많은 주목을 받는 분야입니다. 우리는 과거의 경험으로부터 학습을 할 수 있습니다. 자라왔던 수년동안 경험했었던 칭찬과 꾸중을 통해 지금의 우리가 형성되었다고 할 수 있을것입니다. 이런 인간이 학습하는 과정을 Machine Learning(기계 학습)에 적용해볼수 없을까 해서 만들어진것이 바로 이 Reinforcement Learning 입니다. Reinforcement Learning은 Agent와 Environme..
내 블로그 - 관리자 홈 전환 |
Q
Q
|
---|---|
새 글 쓰기 |
W
W
|
글 수정 (권한 있는 경우) |
E
E
|
---|---|
댓글 영역으로 이동 |
C
C
|
이 페이지의 URL 복사 |
S
S
|
---|---|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.