* 이 글은 홍콩과기대 김성훈 교수님의 무료 동영상 강좌 "모두를 위한 머신러닝과 딥러닝 강의"를 보고 요점을 정리한 글 입니다. DQN대부분의 Reinforcement Learning을 적용시키는 부분은 카메라를 통해 입력받은 화면을 사용하기 때문에 Q-Table로는 표현하기가 매우 어렵습니다. 이러한 이유 때문에 Q-Table을 대체할 것을 선택하였고 대안인 Neural Network를 사용한 방법을 Q-Network라고 합니다. Q-Network의 알고리즘은 매우 훌륭하지만 실질적으로 실행시켜보면 잘 돌아가지 않습니다. 그 이유는 2가지 요인 때문인데 첫번째 요인은 Sample Data들 간의 연관성을 고려해야 한다는 점이고 두번째 요인은 예측한 값을 비교해야하는 값이 안정되어 있지 않다는 점 입니..
* 이 글은 홍콩과기대 김성훈 교수님의 무료 동영상 강좌 "모두를 위한 머신러닝과 딥러닝 강의"를 보고 요점을 정리한 글 입니다. Q-NetworkQ-Table을 사용한 학습은 굉장히 쉽게 사용할 수 있습니다. 하지만 카메라를 통해 입력받은 화면에 대한 Q-Table은 엄청난 크기를 가지게 됩니다. Reinforcement Learning(강화 학습)을 사용할 수 있는 대부분이 이런 카메라를 통해 입력받는 화면을 사용해야 하기 때문에 Q-Table를 대신할 새로운 방법을 생각해야 했습니다. 이런 Q-Table을 대신하여 문제를 해결하기 위해서 선택된 방법이 바로 Neural Network(신경망)입니다. 이 Neural network를 사용한 Reinforcement Learning을 다른 말로 Q-Ne..
* 이 글은 홍콩과기대 김성훈 교수님의 무료 동영상 강좌 "모두를 위한 머신러닝과 딥러닝 강의"를 보고 요점을 정리한 글 입니다. Q-Learning in non-deterministic worldEnvironment(환경)는 Stochastic(확률론적인)한 성질을 가지고 있다고 할 수 있습니다. 따라서 Deterministic한 모델에서처럼 모델의 출력이 매개변수 값과 초기 조건에 의해 완전히 결정되는 것이 아니라 특유의 무작위성이 있기 때문에, 동일한 설정의 매개변수 값과 초기 조건이어도 다른 출력이 발생될 수 있습니다. 따라서 Equation (1)을 그대로 사용하게 되면 실제로는 학습이 잘 되지 않을 수 있습니다. $$ Q(s, a) = r + \gamma \max_{a'} Q(s', a') $..
* 이 글은 홍콩과기대 김성훈 교수님의 무료 동영상 강좌 "모두를 위한 머신러닝과 딥러닝 강의"를 보고 요점을 정리한 글 입니다. Q-Learning AlgorithmReinforcement Learning(강화 학습)에서 Agent가 Action을 결정하는 것을 도와주는 함수를 Q-Function이라고 하고 Q-Function의 출력값을 사용해서 Action을 결정하는 것을 Q-Learning이라고 합니다. Q-Learning의 알고리즘을 수식으로 표현하면 Equation (1)과 같습니다. Q(s,a)=r+max(1) 하지만 위의 수식을 그대로 사용해서 학습을 하게될 경우, 한번 목표에 도달하게된 경로로만 움직이고 새로운 길을 학습하지 않는다는 문제점이 발생하..
* 이 글은 홍콩과기대 김성훈 교수님의 무료 동영상 강좌 "모두를 위한 머신러닝과 딥러닝 강의"를 보고 요점을 정리한 글 입니다. Q-LearningReinforcement Learning(강화 학습)에서 Agent는 현재 State에서 Action을 취하기 전까지 다른 State에 대한 정보를 알지 못합니다 또한 Goal에 도달하기 전까지는 Reward가 0이기 때문에 Action이 좋은지 나쁜지 알 수 없습니다. 따라서 어떠한 Action을 취할지 결정하는 것은 매우 중요하다고 할 수 있습니다. 이러한 상황에서 Agent가 Action을 결정하는 것을 도와주는 함수를 Q-Function이라고 하고 다른말로는 State-Action Value Function이라고도 합니다. 이 함수는 현재의 State..
* 이 글은 홍콩과기대 김성훈 교수님의 무료 동영상 강좌 "모두를 위한 머신러닝과 딥러닝 강의"를 보고 요점을 정리한 글 입니다. OpenAI GYMReinforcement Learning(강화 학습)은 Agent와 Environment(환경)로 구성되어 있습니다. Agent가 어떠한 Action(행동)을 하게 되면 그것에 따른 Environment에서의 State(상태)와 Reward(보상)에 대한 정보를 받게 되고 이것을 통하여 학습을 하는 것이 Reinforcement Learning인데, 여기서 Environment를 전부 구현하는 것은 매우 어렵습니다. 이런 구현하기 어려운 Environment가 미리 구현되어져 있고 이것을 라이브러리를 통해 쉽게 사용할 수 있게 제공하는 것이 OpenAI GY..
내 블로그 - 관리자 홈 전환 |
Q
Q
|
---|---|
새 글 쓰기 |
W
W
|
글 수정 (권한 있는 경우) |
E
E
|
---|---|
댓글 영역으로 이동 |
C
C
|
이 페이지의 URL 복사 |
S
S
|
---|---|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.