* 이 글은 홍콩과기대 김성훈 교수님의 무료 동영상 강좌 "모두를 위한 머신러닝과 딥러닝 강의"를 보고 요점을 정리한 글 입니다. ReLU(Rectified Linear Unit)복잡한 문제를 해결하기 위해서는 많은 Layer를 가지고 있는 Neural Network(신경망)를 사용해야합니다. 각각의 Layer에서는 Weight(가중치)와 Bias를 적용시켜서 계산해 주어야 하고 계산한 값을 Activation Function(활성화 함수)을 통해서 한번 바꾸어준 뒤 다음 Layer로 넘겨주어야합니다. 모든 Layer를 계산하고 도출된 마지막 결과값은 0과 1사이의 값이 나와야하기 때문에 Activation Function으로 Sigmoid Function(시그모이드 함수)을 사용해야합니다. 하지만 이것..
* 이 글은 홍콩과기대 김성훈 교수님의 무료 동영상 강좌 "모두를 위한 머신러닝과 딥러닝 강의"를 보고 요점을 정리한 글 입니다. Logistic Regression(논리 회귀)Logistic Regression(논리 회귀) 이란 Linear Regression(선형회귀)의 Hypothesis(가설)인 Equation (1)을 z 변수라고 하고 이 z변수를 Sigmoid Function(시그모이드 함수)의 변수로 사용한 공식을 Hypothesis로 사용한 Regression 입니다. H(x)=Wx(1) Logistic Regression의 결과값은 0과 1사이의 값이 나오며 이것을 통하여 Classification(분류)도 가능하기 때문에 Logistic Classification(논리 분류..
* 이 글은 홍콩과기대 김성훈 교수님의 무료 동영상 강좌 "모두를 위한 머신러닝과 딥러닝 강의"를 보고 요점을 정리한 글 입니다. Regression(회귀) 일반화Regression(회귀)의 Hypothesis(가설)을 일반화 해보면 Equation (1)으로 표현이 가능합니다. H(x)=Wx(1) 일반화시킨 Hypothesis를 Cost Function(비용 함수)에 대입해서 Equation (2)를 도출하고, 이 새로이 도출한 Cost Function을 Gradient Descent Algorithm(기울기 감소 알고리즘)에 대입하여 일반화된 공식인 Equation (3)를 도출할 수 있습니다. $$ \text{cost}(W) = \frac{1}{m} \sum_{i=1}^{m} (Wx^{(..
내 블로그 - 관리자 홈 전환 |
Q
Q
|
---|---|
새 글 쓰기 |
W
W
|
글 수정 (권한 있는 경우) |
E
E
|
---|---|
댓글 영역으로 이동 |
C
C
|
이 페이지의 URL 복사 |
S
S
|
---|---|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.