컴공돌이의 스터디 블로그
close
프로필 배경
프로필 로고

컴공돌이의 스터디 블로그

  • 분류 전체보기 (29)
    • 논문 Study (0)
      • 국제 저널 논문 요약 (0)
      • 국제 학회 논문 요약 (0)
    • 모델 Study (0)
    • 강의 Study (29)
      • 모두를 위한 머신러닝과 딥러닝 강의-시즌 1 (22)
      • 모두를 위한 머신러닝과 딥러닝 강의-시즌 RL (7)
  • 홈
  • 태그
  • 방명록
[시즌1].Lecture 11_1 - Convolutional Neural Networks_ConvNet의 Conv 레이어 만들기

[시즌1].Lecture 11_1 - Convolutional Neural Networks_ConvNet의 Conv 레이어 만들기

* 이 글은 홍콩과기대 김성훈 교수님의 무료 동영상 강좌 "모두를 위한 머신러닝과 딥러닝 강의"를 보고 요점을 정리한 글 입니다. Convolutional Neural Network(CNN, 합성곱 신경망)Convolutional Neural Network(CNN, 합성곱 신경망)은 서로 다른 이미지를 볼 때 사용되는 신경세포가 다르다는 사실으로부터 착안된 학습방법입으로 이미지를 인식하는 부분에 있어서 매우 높은 정확도를 갖는 아주 좋은 학습법 입니다. CNN은 Convolutional Layer, Pooling Layer, Fully Connected Layer 들으로 구성됩니다. Convolutional Layer와 Pooling Layer를 적절하게 여러번 사용한 후 마지막에 Fully Connec..

  • format_list_bulleted 강의 Study/모두를 위한 머신러닝과 딥러닝 강의-시즌 1
  • · 2024. 7. 5.
  • textsms
[시즌1].Lecture 10_3 - Neural Network 2: ReLU and 초기값 정하기_Dropout 과 앙상블

[시즌1].Lecture 10_3 - Neural Network 2: ReLU and 초기값 정하기_Dropout 과 앙상블

* 이 글은 홍콩과기대 김성훈 교수님의 무료 동영상 강좌 "모두를 위한 머신러닝과 딥러닝 강의"를 보고 요점을 정리한 글 입니다. DropoutMachine Learning(기계 학습)의 가장 중요한 문제점들 중 하나는 바로 Overfitting(과적합)입니다. 이 Overfitting은 Training Data Set에 너무 적합해진 현상을 의미합니다. Training Data Set으로 입력데이터를 집어넣으면 결과는 잘 나오지만 그밖의 데이터 Test Data Set을 입력데이터로하여 집어넣으면 좋지 않은 결과가 나오게되는 것이 이 Overfitting의 문제점이라고 할 수 있습니다. Error율과 Neural Network의 Layer수를 비교해 보면 Training Data Set을 입력데이터로 ..

  • format_list_bulleted 강의 Study/모두를 위한 머신러닝과 딥러닝 강의-시즌 1
  • · 2024. 7. 3.
  • textsms
  • navigate_before
  • 1
  • navigate_next
공지사항
전체 카테고리
  • 분류 전체보기 (29)
    • 논문 Study (0)
      • 국제 저널 논문 요약 (0)
      • 국제 학회 논문 요약 (0)
    • 모델 Study (0)
    • 강의 Study (29)
      • 모두를 위한 머신러닝과 딥러닝 강의-시즌 1 (22)
      • 모두를 위한 머신러닝과 딥러닝 강의-시즌 RL (7)
최근 글
인기 글
최근 댓글
태그
  • #cost function
  • #RL
  • #convolutional neural network
  • #neural network
  • #Q learning
  • #state
  • #CNN
  • #reinforcement learning
  • #합성곱 신경망
  • #action
전체 방문자
오늘
어제
전체
05-13 06:36
Copyright © 쭈미로운 생활 All rights reserved.
Designed by JJuum

티스토리툴바