* 이 글은 홍콩과기대 김성훈 교수님의 무료 동영상 강좌 "모두를 위한 머신러닝과 딥러닝 강의"를 보고 요점을 정리한 글 입니다. Recurrent Neural Network(RNN)우리가 사용하는 데이터에는 Sequence Data(순차적 데이터)가 굉장히 많습니다. Sequence Data란 하나의 데이터가 아니라 음성, 문장과 같은 연속적인 데이터를 의미합니다. 기본적인 Neural Network나 Convolutional Neural Network 같은 경우에는 1개의 입력이 1개의 출력으로 반환되는 형태이기 때문에 Sequence Data 같은 Series Data를 적용하기에는 어려움이 있습니다. 이전 State의 값이 현재 State의 값에 영향을 끼치는 Sequence Data를 사용하기 ..
* 이 글은 홍콩과기대 김성훈 교수님의 무료 동영상 강좌 "모두를 위한 머신러닝과 딥러닝 강의"를 보고 요점을 정리한 글 입니다. LeNet-5LeCun 교수님은 1990년에 LeNet-1을 발표하였고 이것을 조금씩 보완해서 1998년에 LeNet-5를 만들어 내었습니다. LeNet-5에서는 입력데이터의 크기를 32 x 32로 만들었고 Convolution Layer에서 사용되는 Filter의 크기를 5 x 5로 Stride는 1으로, Pooling Layer에서 사용되는 Filter의 크기를 2 x 2로 Stride는 2로 설정하였습니다. AlexNetAlex는 2012년에 AlexNet을 논문으로 발표하였습니다. AlexNet은 2개의 병렬구조인 점을 제외하면 LeNet-5와 크게 다르지는 않습니다..
* 이 글은 홍콩과기대 김성훈 교수님의 무료 동영상 강좌 "모두를 위한 머신러닝과 딥러닝 강의"를 보고 요점을 정리한 글 입니다. Pooling LayerPooling Layer에서 Pooling은 다른 말로 Sampling이라고 부를 수도 있습니다. Layer의 이름에서 알 수 있듯이 Pooling Layer에서는 여러 Depth를 가지고 있는 Feature Map의 각각의 Depth마다 Resize(Sampling)을 해준 뒤 다시 합쳐주는 작업을 하게 됩니다. Pooling Layer에서도 Convolution Layer처럼 Filter를 사용합니다. Filter의 크기와 Stride를 정해주면 그것을 사용해서 Sampling을 해주게 되는데 여기서 주로 사용되는 방법이 바로 Max Pooling이..
* 이 글은 홍콩과기대 김성훈 교수님의 무료 동영상 강좌 "모두를 위한 머신러닝과 딥러닝 강의"를 보고 요점을 정리한 글 입니다. Convolutional Neural Network(CNN, 합성곱 신경망)Convolutional Neural Network(CNN, 합성곱 신경망)은 서로 다른 이미지를 볼 때 사용되는 신경세포가 다르다는 사실으로부터 착안된 학습방법입으로 이미지를 인식하는 부분에 있어서 매우 높은 정확도를 갖는 아주 좋은 학습법 입니다. CNN은 Convolutional Layer, Pooling Layer, Fully Connected Layer 들으로 구성됩니다. Convolutional Layer와 Pooling Layer를 적절하게 여러번 사용한 후 마지막에 Fully Connec..
* 이 글은 홍콩과기대 김성훈 교수님의 무료 동영상 강좌 "모두를 위한 머신러닝과 딥러닝 강의"를 보고 요점을 정리한 글 입니다. 다양한 형태의 Neural Network 위의 사진에서 볼 수 있듯이 Neural Network는 마치 레고처럼 생각한대로 만들 수가 있습니다. Neural Network 중간에 Layer를 나누는 것도 가능하고, 여러개의 Layer를 1개로 합치는 것도 가능합니다. 이런 다양한 모양의 Neural Network는 상상력에 의해서 얼마든지 새로운 모양이 나올 수 있습니다. 현재 상태를 분석하는데 이전 상태의 결과를 포함하는 모델인 Recurrent Neural Network 또한 이런 상상력에 의해서 발견되었다고 말할 수 있습니다.
* 이 글은 홍콩과기대 김성훈 교수님의 무료 동영상 강좌 "모두를 위한 머신러닝과 딥러닝 강의"를 보고 요점을 정리한 글 입니다. DropoutMachine Learning(기계 학습)의 가장 중요한 문제점들 중 하나는 바로 Overfitting(과적합)입니다. 이 Overfitting은 Training Data Set에 너무 적합해진 현상을 의미합니다. Training Data Set으로 입력데이터를 집어넣으면 결과는 잘 나오지만 그밖의 데이터 Test Data Set을 입력데이터로하여 집어넣으면 좋지 않은 결과가 나오게되는 것이 이 Overfitting의 문제점이라고 할 수 있습니다. Error율과 Neural Network의 Layer수를 비교해 보면 Training Data Set을 입력데이터로 ..